Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity
Yoke Wang Cheng,
Chi Cheng Chong,
Soon Poh Lee,
Jun Wei Lim,
Ta Yeong Wu and
Chin Kui Cheng
Renewable Energy, 2020, vol. 148, issue C, 349-362
Abstract:
Steam reforming (SR) of palm oil mill effluent (POME) over net-basic LaCoO3 was optimised for syngas production (FSyngas) and degradation efficacies (XP) by tuning temperature (T), POME flow rate (V˙POME), catalyst weight (Wcat), and particle size (dcat). Net-basicity of LaCoO3 facilitated the adsorption of Lewis acid CO2, thereby assisted carbon removal via reverse Boudouard reaction. POME SR over LaCoO3 was promoted by using (i) higher T (endothermicity), (ii) greater V˙POME (larger partial pressure at constant weight-hourly-space-velocity and total feed rate), (iii) larger Wcat (longer residence time for POME vapour), and (iv) smaller dcat (higher surface area to volume ratio). Nevertheless, the catalytic activity of LaCoO3 declined with (i) severe coking and sintering deactivation (T≥973 K), (ii) carbon-encapsulation (V˙POME = 0.10 mL/min), (iii) agglomeration (Wcat>0.3 g), and (iv) pore occlusion (dcat<74 μm). Hence, the optimum conditions of POME SR over LaCoO3 were T = 873 K, V˙POME = 0.09 mL/min, Wcat = 0.3 g, and dcat = 74–105 μm. The optimised process able to produce syngas at a rate of 86.60 μmol/min whilst degrading POME to a less polluted liquid condensate (COD = 435 mg/L and BOD5 = 62 mg/L).
Keywords: Syngas generation; Palm oil mill effluent; Steam reforming; Wastewater valorisation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119315319
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:148:y:2020:i:c:p:349-362
DOI: 10.1016/j.renene.2019.10.040
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().