Increased anode respiration enhances utilization of short-chain fatty acid and lipid wet-extraction from Scenedesmus acutus biomass in electro-selective fermentation
Yuanzhe Liu,
Yen-Jung Sean Lai and
Bruce E. Rittmann
Renewable Energy, 2020, vol. 148, issue C, 374-379
Abstract:
Electro-selective fermentation (ESF) can improve lipid extraction from Scenedesmus acutus biomass using green solvents like hexane and 1:1 hexane: isopropanol, but accumulation of short-chain fatty acids (SCFAs) wastes useable electrons. To eliminate the electron loss, we designed a flat-plate microbial electrolytic cell (MEC) to have a large anode area for a biofilm of anode respiring bacteria (ARB) that oxidize the SCFAs and generate current that produces H2 gas at the cathode. In 9-day batch tests of ESF in the flat-plate MEC, 18% of the total electrons in the feeding biomass were scavenged by the ARB biofilm and converted to current, leaving minimal concentrations of SCFAs. Extraction with two solvents -- 1:1 hexane:isopropanol and 100% hexane – was evaluated at the end of the 9-day experiments. 30% of the total lipids became hexane-extractable with ESF, compared to <1% in the feeding biomass. Furthermore, hexane had 100% selectivity towards saturated long-chain fatty acids (LCFAs), which are superior for biofuel production. Thus, ESF improved the quantity and quality of extractable FAME-based biofuel from S. acutus, while directing electron equivalents in SCFAs to current and H2 generation at the cathode.
Keywords: Electro-selective fermentation; Short-chain fatty acids; Lipids; Solvents; Selectivity; Scenedesmus (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119315356
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:148:y:2020:i:c:p:374-379
DOI: 10.1016/j.renene.2019.10.043
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().