Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region
Madina Bimaganbetova,
Shazim Ali Memon and
Almas Sheriyev
Renewable Energy, 2020, vol. 148, issue C, 402-416
Abstract:
Phase change materials can be applied into building framework to reduce energy and fossil fuel consumption as well as to make the building sector more sustainable. In this research, it is hypothesized that a group of PCMs in the narrow range can be used for the whole tropical savanna climate according to Koppen-Geiger climate classification. Eight representative cities (Bamako, Bangalore, Bangkok, Brasilia, Dar es Salaam, Kolkata, Maputo and Surabaya) from seven different countries (Mali, Thailand, Brazil, Tanzania, India, Mozambique and Indonesia) were chosen in accordance with their demographical and economical state. Numerical simulations were performed in DesignBuilder software to carry out detailed investigation about thermal behavior and energy performance of a residential building integrated with eleven different PCMs (PCM21-PCM31). In addition, the impact of PCM thickness, its location in the wall (external, middle, and internal) and different surface area were assessed. Results of thermal performance during a summer day revealed that temperature fluctuations in PCM integrated building dropped by up to 2.76 °C even when the HVAC system was switched off. From energy analysis, the hypothesis of this research was confirmed, and the narrow range of PCMs (PCM25-PCM29) were found to be optimum for this climate zone. Considerable energy savings and energy consumption reduction up to 68.63% was obtained. Furthermore, for constant volume, the thinner PCM layer with greater surface area exhibited superior performance in terms of energy savings. Hence, the incorporation of PCM in buildings located in a tropical savanna climate is feasible.
Keywords: Energy efficiency; Koppen-Geiger classification; Phase change materials; Thermal performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119315332
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:148:y:2020:i:c:p:402-416
DOI: 10.1016/j.renene.2019.10.046
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().