Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit
Pouyan Talebizadeh Sardari,
Donald Giddings,
David Grant,
Mark Gillott and
Gavin S. Walker
Renewable Energy, 2020, vol. 148, issue C, 987-1001
Abstract:
This paper evaluates the discharging mechanism in a PCM (phase change material) to air heat exchanger for the purpose of space heating using a composite of copper foam and PCM. The composite system is modelled with both 2-D and 3-D computational fluid dynamics approach for different inlet air temperatures to consider the effect of room temperature using the thermal non-equilibrium model for the porous medium compared with the thermal equilibrium one. The results show the significant advantages of composite heat exchanger compared with a PCM only case. For the inlet air temperature of 22 °C, the composite unit is solidified in 43% shorter time with 73% higher heat retrieval rate compared with that for the PCM only. After 10 h, the temperature variation between the inlet and outlet of the air channels for latent heat storage heat exchanger system with the composite system is 41 °C and 34 °C for the inlet air temperatures of 0 °C and 22 °C, respectively, while it is 33 °C and 29 °C for the system with PCM only. This study show the possible usage of PCMs in the energy storage heaters by introducing metal foams which is not possible using PCM only alternatives.
Keywords: PCM-air heat exchanger; Latent heat storage; Composite metal foam/PCM; Phase change material; Porous media; Discharging (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119315757
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:148:y:2020:i:c:p:987-1001
DOI: 10.1016/j.renene.2019.10.084
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().