Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests
R.P.F. Gomes,
J.C.C. Henriques,
L.M.C. Gato and
A.F.O. Falcão
Renewable Energy, 2020, vol. 149, issue C, 165-180
Abstract:
The development of devices for extracting wave energy from the ocean is largely supported by numerical models, as they allow the simulation of different configurations without the large costs of tank testing. From the different available options, time-domain models offer a very good combination between accuracy, flexibility and computational time. They allow the incorporation of non-linearities from power take-off systems, mooring lines, sophisticated control techniques and other relevant hydrodynamic effects. In this paper, we present a time-domain model to simulate the dynamics and power performance of a slack-moored Spar-buoy OWC (Oscillating Water Column) wave energy converter. The model considers linear hydrodynamics, mean drift forces, viscous drag effects and air compressibility inside the OWC chamber. The mooring system is simulated using a quasi-static approach. The floating structure is defined as a rigid body with six degrees of freedom, whereas the OWC free surface is assumed flat. The converter motion and power extraction from regular and irregular wave simulations are compared with experimental results from small-scale model tests in a wave channel. Numerical results show good agreement with experimental data except when parametric resonance is observed and near the channel cut-off frequencies.
Keywords: Wave energy; Time-domain model; Hydrodynamic modelling; Floating oscillating water column; Experimental testing; Spar-buoy OWC (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318610
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:165-180
DOI: 10.1016/j.renene.2019.11.159
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().