EconPapers    
Economics at your fingertips  
 

Feasibility of ethanol production from expired rice by surface immobilization technology in a new type of packed bed pilot reactor

Qingguo Liu, Nan Zhao, Yanan Zou, Hanjie Ying and Yong Chen

Renewable Energy, 2020, vol. 149, issue C, 321-328

Abstract: This study evaluated the feasibility of ethanol production from expired rice by surface immobilization technology fermentation. The process was carried out using temperature tolerant active fresh yeast TH-AADY cells immobilized on cotton fiber placed in a reticular hollow sphere. A 320-ton pilot reactor with a multi-layer packed bed immobilized structure and multi-branch circulation path was used instead of the typical cylindrical immobilized reactor. The average values of the alcohol degree and fermentation efficiency of the immobilized yeast cells were 12.46% (v/v) and 83.72%, respectively, which were 0.45% (v/v) and 3.2% higher than those of a free-cell fermentation. The fermentation was repeated for 32 batches with good reusability and long-term stability. In addition, fermentation via cell immobilization created an extra benefit of 6.37% per ton of fuel alcohol based on the mean market price in China. The results obtained in this study indicate that ethanol production from expired rice using immobilized yeast in the new bioreactor is feasible and may meet the demands of industrial production based on the fermentation indexes and economic evaluation.

Keywords: Rice; Ethanol; Surface immobilization; Yeast; Pilot scale; Economic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119319032
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:321-328

DOI: 10.1016/j.renene.2019.12.031

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:321-328