EconPapers    
Economics at your fingertips  
 

Alkane from hydrodeoxygenation (HDO) combined with in-situ multistage condensation of biomass continuous pyrolysis bio-oil via mixed supports catalyst Ni/HZSM-5-γ-Al2O3

Zhiyu Li, Xiwei Xu, Enchen Jiang, Ping Han, Yan Sun, Ling Zhou, Peidong Zhong and Xudong Fan

Renewable Energy, 2020, vol. 149, issue C, 535-548

Abstract: Faced with fossil fuel depletion and increasing environmental concerns, the conversion of renewable biomass into fuels or chemicals is promising but extremely challenging due to the inertness and complexity of biomass. Therefore, in situ multistage condensation combined with the HDO of pyrolysis bio-oil was chosen to reduce the complexity and improve the quality of bio-oil. In addition, the activity and stability of the catalyst was enhanced. The bio-oil obtained via continuous pyrolysis was divided into four-stage depending on their boiling point via in situ multistage condensation. After HDO, the relative content of long-chain alkanes was over 80% for each stage bio-oil via mixed supported Ni/HZSM-5-γ-Al2O3 catalyst. Especially, the main components in the 3rd oil (aqueous phase) were n-heneicosane (31.60%), icosane (5.13%) and n-heptadecane (4.36%) based on the highest HDO ratio. Moreover, the reaction mechanism was discussed via the HDO of model bio-oil. The main reaction pathway consisted of hydrogenation and dehydration reactions (HYD pathway), and a side reaction was the direct deoxygenation route (DDO pathway). This work provides a general and efficient pathway for directly converting biomass into valuable long chain alkanes.

Keywords: Hydrodeoxygenation; Bio-oil; Ni/HZSM-5-γ-Al2O3; Alkane; HDO ratio (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119315265
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:535-548

DOI: 10.1016/j.renene.2019.10.035

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:535-548