EconPapers    
Economics at your fingertips  
 

Potential advantages in heat and power production when biogas is collected from several digesters using dedicated pipelines - A case study in the “Province of West-Flanders” (Belgium)

E.J. Hengeveld, J. Bekkering, M. Van Dael, W.J.T. van Gemert and A.A. Broekhuis

Renewable Energy, 2020, vol. 149, issue C, 549-564

Abstract: In the case study “West-Flanders” costs of electricity and heat production are estimated if a dedicated biogas grid using pipelines would be implemented to centralize energy production in a region. Heat may not be used effectively at digester sites, e.g. because of a change in treatment of digestate. A large scale centralized combined heat and power (CHP) engine can produce additional electrical power at a hub, i.e. central collection point, and has lower specific costs compared to decentralized CHPs at digester sites. A biogas transport model is used to calculate transport costs in a grid. These costs, partly balanced by a scale advantage in CHP costs, are attributed to the additional electrical energy (80%) and heat (20%) produced. If the hub is at a digester site, costs of additional electricity can be as low as 4.0 €ct kWhe−1 and are in many cases below 12 €ct kWhe−1, i.e. in the same order of magnitude or lower than costs of electricity from biogas produced using separate CHPs at the different digester sites; costs of heat at the hub show to be lower than 1 €ct kWhth−1 assuming an effective heat use of 50%. In case a hub is situated at a location with high potential heat demand, i.e. a heat sink, transport of biogas from one digester only to a central located hub can provide 3.4 MWth of heat at 1.95 €ct kWhth−1. For such a centrally located hub additional electrical energy costs show to be slightly higher, but with three or more digesters these costs are lower than 20 €ct kWhe−1 and heat costs are around 0.5 €ct kWhth−1. With a centralized hub more renewable energy is produced, i.e. a more efficient use of biomass feedstock. It is concluded that costs for additional electricity and heat can be at a competing level and scale advantages in a CHP can be a driver to collect biogas at a hub using a biogas grid.

Keywords: Biogas CHP; Scale dependency; Electrical efficiency; Biogas transport; Biogas grid; Centralized processing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318798
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:549-564

DOI: 10.1016/j.renene.2019.12.009

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:549-564