Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings
Rajat Saxena,
Dibakar Rakshit and
S.C. Kaushik
Renewable Energy, 2020, vol. 149, issue C, 587-599
Abstract:
This study aims at providing a formidable solution to rapid increasing building energy demands. It projects Phase Change Material (PCM) incorporated bricks as a passive solution for cooling load abatement. The PCMs for this research are selected based on their thermal characteristics through Differential Scanning Calorimeter (DSC) and climatic conditions of the place. In this study, the experimental testing of PCM bricks under actual conditions, followed by, assessing the impact of various PCM configurations is carried out. The experiments are carried out for peak summer conditions, with ambient temperature above 40 °C, during the day. The temperature reduction of 4 °C–9.5 °C is observed across single and dual PCM layer bricks, compared to the conventional ones. The heat transfer reduction between 40% and 60% is observed, during the day. These bricks are also used to determine the effect of increasing the PCM thickness and using it in combination with fins, to assess the impact in terms of temperature and heat transfer to the inside surface. However, the results showed that using fins has a detrimental impact on temperature and heat flow.
Keywords: Energy conservation; Passive conditioning; Phase change materials; Differential scanning calorimeter; Characterization; Macro-encapsulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119319536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:587-599
DOI: 10.1016/j.renene.2019.12.081
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().