EconPapers    
Economics at your fingertips  
 

The near-field of a lab-scale wind turbine in tailored turbulent shear flows

L. Li, R.J. Hearst, M.A. Ferreira and B. Ganapathisubramani

Renewable Energy, 2020, vol. 149, issue C, 735-748

Abstract: Real wind turbines experience a wide range of turbulent shear flows that naturally occur within the atmospheric boundary layer, however, these are often difficult to simulate in experiments. An active grid was used to expand the testable parameter space compared to conventional methods. Specific focus was placed on decoupling the shear from the turbulence intensity. Particle image velocimetry was used to capture the mean velocity and velocity fluctuation fields in the near-field wake of a model wind turbine subjected to seven different combinations of shear and turbulence intensity. It was found that if the incoming mean profile was removed, the velocity deficit is approximately symmetric about the hub, even for highly sheared cases. The absolute wake velocity deficit profiles are asymmetric for the sheared cases, and the combination of the wake and shear flow results in a local increase in shear on the high-velocity side of the wake immediately downstream of the turbine. This in turn leads to higher turbulence production within that region, leading to larger velocity fluctuations. It is also demonstrated that the mean power of the model turbine is not particularly sensitive to the incoming shear, but the power fluctuations scale linearly with the incoming turbulence intensity.

Keywords: Wind turbine; Tailored turbulence; Shear flow; Lab-scale (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119319214
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:735-748

DOI: 10.1016/j.renene.2019.12.049

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:735-748