Surrogate model uncertainty in wind turbine reliability assessment
René M.M. Slot,
John D. Sørensen,
Bruno Sudret,
Lasse Svenningsen and
Morten L. Thøgersen
Renewable Energy, 2020, vol. 151, issue C, 1150-1162
Abstract:
Lowering the cost of wind energy entails the optimization of wind turbine material consumption without compromising structural safety. Traditionally, wind turbines are designed by the partial safety factor method, which is calibrated by probabilistic models and presented in the IEC 61400-1 design standard. This approach significantly reduces the amount of aero-elastic simulations required to assess the fatigue limit state of wind turbines, but it may lead to inconsistent reliability levels across wind farm projects. To avoid this, wind turbines may be designed by probabilistic methods using surrogate models to approximate fatigue load effects. In this approach, it is important to quantify and model all relevant uncertainties including that of the surrogate model itself. Here we quantify this uncertainty according to Eurocode 1990 for polynomial chaos expansion (PCE) and Kriging using wind data from 99 real sites and the 5 MW reference turbine designed by NREL. We investigate a wide range of simulation efforts to train the surrogate models. Our results show that Kriging yields a higher accuracy per invested simulation compared to PCE. This improved understanding of utilizing PCE and Kriging in fatigue reliability assessment may significantly benefit decision support in probabilistic design of wind turbines.
Keywords: Wind turbine; Fatigue loads; Structural reliability; Surrogate models; Model uncertainty (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811931794X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:1150-1162
DOI: 10.1016/j.renene.2019.11.101
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().