Design and development of energy efficient re-roofing solutions
Shahryar Habibi,
Esther Adhiambo Obonyo and
Ali M. Memari
Renewable Energy, 2020, vol. 151, issue C, 1209-1219
Abstract:
Although the study of roofing systems (from coverings to structure of the roof) is of great significance to energy efficiency and sustainable development, design and construction of new roofs on top of existing roofs in buildings has not received sufficient attention. This study discusses re-roofing as one of the key options to reduce energy consumption and improve overall building performance. The more conventional choice and more frequently chosen option for building energy retrofit is vertical building envelope components, however, this paper presents the case study of a proposed retrofitting concept for the roof of an existing building. Using a simulation methodology, the research demonstrates how the proposed retrofitting concept improves the energy performance using electricity generated and external conduction gain as evaluation metrics. The proposed novel re-roofing concept consists of thermal insulation, waterproofing and electric energy generation properties. More specifically, the design concept includes a three-layer roofing system consisting of (from exterior toward interior): a PV panel, an EPDM membrane and an insulation layer. The main goal of this study is to develop a concept for an innovative re-roofing solution that demonstrates the feasibility of turning an old building into a watertight and energy producing system.
Keywords: Energy-efficient building materials; Retrofit strategies; BIM; Solar panels (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:1209-1219
DOI: 10.1016/j.renene.2019.11.128
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().