An agent-based model to predict fish collisions with tidal stream turbines
Kate Rossington and
Thomas Benson
Renewable Energy, 2020, vol. 151, issue C, 1220-1229
Abstract:
Interest in marine tidal turbines, particularly in coastal waters, raises concerns about collisions between marine wildlife and underwater turbine blades. Prediction methods for collisions are necessary to evaluate possible consequences for marine animal populations. Existing collision risk models, based on analytical solutions, assume simplistic non-behavioural traits. This paper seeks to advance these collision models to represent real behaviours of marine species by extending an existing numerical Agent-Based Model (ABM) to include predictions of collisions.
Keywords: Tidal stream turbines; Fish encounters; Numerical modelling; Agent-based model; Collision risk model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811931821X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:1220-1229
DOI: 10.1016/j.renene.2019.11.127
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().