Innovative overheating solution for solar thermal collector using a reflective surface included in the air gap
A. Amiche,
S.M.K. El Hassar,
A. Larabi,
Z.A. Khan,
Z. Khan,
F.J. Aguilar and
P.V. Quiles
Renewable Energy, 2020, vol. 151, issue C, 355-365
Abstract:
In this work, a new solution to prevent the overheating of solar collectors in the case of stagnation is presented. The solution proposed consists of inserting a reflective sheet inside the solar collector between the absorber and the glass cover to reduce the incoming energy by reflecting solar radiation. This protection is switched ON or OFF according to the absorber temperature. A prototype has been manufactured and tested in outside conditions and in laboratory. The prototype was tested with different percentages of protection. With 50% of protection, the overheating problem is eliminated. A simplified numerical model of the solar collector with the protection was developed and has been validated. The calculated temperature values are very close to the measured data. The experimental and numerical results showed the good behaviour of the proposed solution.
Keywords: Flat plate solar collector; Overheating problem; Internal shading protection; Experimental tests; Numerical simulations (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119317045
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:355-365
DOI: 10.1016/j.renene.2019.11.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().