EconPapers    
Economics at your fingertips  
 

Hydrodeoxygenation of m-Cresol over Ru based catalysts: Influence of catalyst support on m-Cresol conversion and methylcyclohexane selectivity

Adarsh Kumar, Avnish Kumar, Bijoy Biswas, Jitendra Kumar, Sudhakara Reddy Yenumala and Thallada Bhaskar

Renewable Energy, 2020, vol. 151, issue C, 687-697

Abstract: The hydrodeoxygenation (HDO) of m-Cresol (a representative of lignin bio-oil) has enormous potential for the production of valuable compounds. The products obtained from HDO of m-Cresol (m-Cr) are blendable into conventional fuels and essential for chemical industries such as plastic, fiber, rubber, resin, film, and coating industry. Ruthenium loaded acidic supports (ZSM-5, β-zeolite, y-zeolite, mordenite, COK12, ZrO2, TiO2) were used for the selective hydrodeoxygenation of m-Cresol into methylcyclohexane (MCXane). The effects of acid sites, as well as the pore size of the different supports on the hydrodeoxygenation activity and selectivity towards methylcyclohexane were addressed. The methylcyclohexane yield increased with increasing number of acid sites up to optimum acidity (532 μmol/gm) along with pore size (5.9 Ao). The experiments were carried out at 225–325 °C and 1–40 bar hydrogen pressure in a fixed bed reactor and observed that reaction temperature, and hydrogen pressure promoted the hydrodeoxygenation. The Ru/ZSM-5 is a stable (240 h) catalyst and displayed excellent behavior in both hydrodeoxygenation activity (100%) and methylcyclohexane selectivity (100%) for m-Cresol.

Keywords: Bio-oil; Bio-oil upgrading; Hydrodeoxygenation; m-Cresol; Methylcyclohexane (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119317690
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:687-697

DOI: 10.1016/j.renene.2019.11.076

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:687-697