EconPapers    
Economics at your fingertips  
 

Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves

Moisés Brito, Rui M.L. Ferreira, Luis Teixeira, Maria G. Neves and Ricardo B. Canelas

Renewable Energy, 2020, vol. 151, issue C, 975-992

Abstract: The aim of this paper is the experimental characterization of the capture width ratio (CWR) and response amplitude operator (RAO) of a 1:10 physical model of an oscillating wave surge converter (OWSC), under unidirectional regular and irregular waves. The effects of hydraulic power take-off (PTO) system are explicitly taken in consideration. A mathematical model is proposed to describe the PTO damping as a function of the angular velocity of the flap. The harmonic decomposition of free-surface elevation, angular velocity of the flap and pressure in the PTO system demonstrates that these signals are dominated by their linear component. However, the signals also present some important higher-order frequency components. To predict the CWR of the OWSC under irregular waves the nonlinear output frequency response functions are considered as the extension of the RAO to the nonlinear case. It is shown and discussed that the PTO system, wave frequency and height have a significant influence on the CWR and RAO. The RAO curve for irregular waves does not exhibit a well-defined peak, showing a limited variation in a broadband. A weak correlation between CWR and RAO was found, i.e., the maximum CWR does not occur for the maximum value of RAO.

Keywords: Wave energy; Oscillating wave surge converter: OWSC; Capture width ratio: CWR; Response amplitude operator: RAO; Power take-off: PTO damping (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119317872
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:975-992

DOI: 10.1016/j.renene.2019.11.094

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:975-992