EconPapers    
Economics at your fingertips  
 

New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications

A. Gimeno-Furio, L. Hernandez, R. Martinez-Cuenca, R. Mondragón, A. Vela, L. Cabedo, C. Barreneche and M. Iacob

Renewable Energy, 2020, vol. 152, issue C, 1-8

Abstract: New systems using solid particles for solar energy capturing, heat transfer and thermal energy storage have been proposed and analysed in direct particle solar receivers. In this work, black coloured silica sand was investigated as a possible solid particle for such combined systems. Two different methods based on a carbon coating approach were implemented to black colour the initial material to improve their solar absorption characteristics. The morphology of the raw and coloured sands was analysed by scanning electron microscopy (SEM), particle size characterisation and porosity measurements. The coating of the black-coloured silica sands was evaluated by thermogravimetry. Solar absorption was characterised in a double-beam UV-VIS spectrophotometer combined with an integrating sphere, and with enhancements of approximately 100%, found for both coloured sands. The thermal storage and heat transfer capabilities of the initial and coated sands were measured at different temperatures. Some improvements in the specific heat capacity and reductions in thermal conductivity due to porosity changes were observed.

Keywords: Solar energy; Particle solar receivers; Nanoparticles; Silica sand; Absorption; Thermal conductivity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120300586
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:1-8

DOI: 10.1016/j.renene.2020.01.053

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1-8