EconPapers    
Economics at your fingertips  
 

Influence of hydrocracking and ionic liquid pretreatments on composition and properties of Arabidopsis thaliana wild type and CAD mutant lignins

Nicolas Jacquet, Aymerick Eudes, Tanmoy Dutta, Kwang Ho Kim, Florent Bouxin, Veronica Benites, Edward Baidoo, Seema Singh, Blake Simmons, Dominique Loqué and Aurore Richel

Renewable Energy, 2020, vol. 152, issue C, 1241-1249

Abstract: Lignin is the primary contributor to the high cost of biofuel-production from lignocellulosic biomass. In order to study lignin removal and the release of aromatic monomers, we applied hydrocracking and ionic liquid pretreatments on Arabidopsis thaliana biomass from both wild type (WT) and a mutant (CAD cxd) defective in two cinnamyl alcohol dehydrogenase genes involved in the lignin biosynthetic pathway. For Arabidopsis WT, our results highlight that pretreatments reduce average molecular weight of lignin by about 65% and decrease the content of β-O-4 linkages between lignin monomers. For Arabidopsis CAD mutant, an opposite effect is evidenced. Fewer differences were observed on depolymerization and molecular structure of lignin, which indicates that (8-O-4), (8-5), and (8-8) linkages observed in CAD mutant make lignin more resilient to pretreatment than wild-type lignin. Finally, our study shows the potential of hydrocracking pretreatment technology for extracting valuable aldehyde monomers such as vanillin and syringaldehyde from biomass.

Keywords: Lignin; Arabidopsis thaliana; Hydrocracking; Ionic liquid; Pretreatment (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120301750
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:1241-1249

DOI: 10.1016/j.renene.2020.01.153

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1241-1249