A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox
Yubin Pan,
Rongjing Hong,
Jie Chen and
Weiwei Wu
Renewable Energy, 2020, vol. 152, issue C, 138-154
Abstract:
Gearbox is one of critical transmission components in wind turbine (WT) having a high downtime rate among all subcomponents. Fault prognostics and health management (PHM) of WT gearbox is crucial to their high reliability operation. However, presence of background noise in WT signals restricts the applicability of existing PHM approaches in feature extraction. To solve this problem, a novel performance degradation assessment method based on deep belief network (DBN) and self-organizing map (SOM) is proposed to de-noise and merge multi-sensor vibration signals. Minimum quantization error (MQE) is defined as health indicator to detect incipient fault of WT gearbox. After health indicator construction, an improved particle filtering (PF) optimized by fruit fly optimization algorithm (FOA) is employed to predict the remaining use life (RUL) of WT gearbox. To take advantage of dynamic and random operation process of WT gearbox, Wiener-process-based degradation model is developed to improving RUL prediction efficiency. The effectiveness is validated by using simulated as well as experimental vibration signals obtained through a WT gearbox highly accelerated life test. The results illustrate that proposed method can evaluate performance degradation process and predict RUL of WT gearbox effectively.
Keywords: Wind turbine gearbox; Prognostics and health management; Deep belief network; Self-organizing map; Particle filtering; Remaining useful life (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120300471
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:138-154
DOI: 10.1016/j.renene.2020.01.042
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().