Effect of nanoparticles in molten salts – MD simulations and experimental study
Adela Svobodova-Sedlackova,
Camila Barreneche,
Gerard Alonso,
A. Inés Fernandez and
Pablo Gamallo
Renewable Energy, 2020, vol. 152, issue C, 208-216
Abstract:
Highlighted experimental studies on nanofluids reveal an anomalous increment in the specific heat capacity (Cp) of these ionic systems when nanoparticles are added. This fact is really important due the applicability of nanofluids in concentrating solar power plants as heat transfer fluid and storage media. These are promising results for the development of high-temperature heat storage applications by enhanced storage capacity materials. The present work focuses on the study of this effect in NaNO3 molten salt doped with SiO2 nanoparticles by molecular dynamics (MD) simulations and Differential Scanning Calorimetry (DSC) experiments. The study shows that for nanoparticles’ concentrations around 1% wt. the Cp increases by 26% compared to pure NaNO3, whereas at higher concentrations the effect disappears. The results approach high agreement between experimental and simulation results and MD simulations reveal that the increase of Cp at low concentrations is explained by the formation of a semi ordered layer of ionic fluid. This layer is rich in Na+ cations, around the nanoparticles whereas the reduction of Cp at concentrations higher than 2% wt. is related to the aggregation of nanoparticles as revealed by Scanning Electron Microscopy (SEM). However, deep experimental results with other materials will be required in order to validate the layering effect.
Keywords: Nanofluids; Molten salt; Silica nanoparticles; Concentrating solar power CSP; Solar energy; Simulations (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120300513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:208-216
DOI: 10.1016/j.renene.2020.01.046
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().