EconPapers    
Economics at your fingertips  
 

Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles

Yu Su, Yanfang Zhang, Jinxia Qi, Tiantian Xue, Minggao Xu, Jiuzhong Yang, Yang Pan and Zhenkun Lin

Renewable Energy, 2020, vol. 152, issue C, 94-101

Abstract: Fast pyrolysis has been recognized as an efficient and feasible way to produce liquid fuels from biomass. For the aim to upgrade the products from fast pyrolysis of hemicellulose, reduced graphene oxide supported Pt nanoparticles (Pt/RGO) was adopted as catalyst for in situ catalytic fast pyrolysis (CFP). Pt/RGO was prepared by one-step thermal reduction method, and further employed as catalyst for in situ CFP of xylan. Online single-photon ionization time-of-flight mass spectrometry was employed to detect the volatile products, and furans were chosen as the model compounds. The experimental results showed that Pt/RGO distinctly increased the intensity of furans products from xylan pyrolysis, as the increase rates were respectively 80.5%, 64.4% and 50.2% in 400 °C, 500 °C and 600 °C. Furthermore, Pt/RGO can accelerate the process of xylan pyrolysis and be effective in eliminating oxygen for furans products. With addition of Pt/RGO, O/C ratio for furans products decreased from 0.38 to 0.32 in 400 °C, 0.37 to 0.32 in 500 °C, and 0.35 to 0.32 in 600 °C, respectively. This work proved that Pt/RGO had the potential to be a highly efficient catalyst for upgrading of the volatile products from in situ CFP of biomass.

Keywords: Biomass; Pt nanoparticles; Catalytic fast pyrolysis; Furans; Synergistic effects (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120300410
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:152:y:2020:i:c:p:94-101

DOI: 10.1016/j.renene.2020.01.036

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:94-101