The effect of urban morphology on the solar capacity of three-dimensional cities
Rui Zhu,
Man Sing Wong,
Linlin You,
Paolo Santi,
Janet Nichol,
Hung Chak Ho,
Lin Lu and
Carlo Ratti
Renewable Energy, 2020, vol. 153, issue C, 1111-1126
Abstract:
As a clean and renewable resource, solar energy is increasingly being used to relieve the pressures on environmental protection and the exhaustion of conventional energy. Although photovoltaic modules have been installed in many cities, the lack of quantitative mapping of the annual solar energy potential of urban surfaces hinders the effective utilization of solar energy. Herein, we provide a solar irradiation estimation solution for three-dimensional (3D) cities to quantify annual irradiations on urban envelopes and to investigate the effect of urban morphology on the resulting solar capacity. By modelling urban surfaces as 3D point clouds, annual irradiations of the point clouds were estimated. An empirical investigation across ten cities suggests that urban areas at lower latitudes tend to have larger values of annual irradiation; moreover, an area having greater building heights consistently has the largest third quartile of irradiation compared with lower buildings in the same city. Conversely, areas with many low buildings have a larger proportion of useable areas; in this arrangement, façades can optimally utilize solar energy, meaning that large irradiations are concentrated on certain façades. The Pearson correlation coefficients between solar capacity and urban morphology indices suggest that urban morphology has an important effect on solar capacity.
Keywords: Solar energy; 3D solar cities; Solar capacity; Urban morphology (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302378
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:1111-1126
DOI: 10.1016/j.renene.2020.02.050
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().