EconPapers    
Economics at your fingertips  
 

Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis

Kanak Raj and Chandraraj Krishnan

Renewable Energy, 2020, vol. 153, issue C, 392-403

Abstract: Process economics of cellulosic ethanol production can be improved by co-production of high value products. Xylitol is a high value nutraceutical and attracted attention as a co-product in cellulosic ethanol process. Here, the production of ethanol and xylitol from sugarcane bagasse pretreated by low-temperature aqueous ammonia soaking was improved by two-stage high solids enzymatic hydrolysis and separate fermentation of glucose and xylose using Candida tropicalis. First-stage high solids fed-batch enzymatic hydrolysis of pretreated bagasse in 3 L bioreactor resulted in 42.6 g/l xylose. The residual solids rich in cellulose were efficiently hydrolyzed by cellulase in the second-stage to glucose. The second stage hydrolysis at 20% solids loading in bioreactor showed 81% efficiency with a glucose concentration of 115.8 g/l. The separate fermentation of the xylose with C. tropicalis in two-stage aeration resulted in 34.5 g/l of xylitol. Fermentation of the glucose by C. tropicalis produced 55.64 g/l of ethanol. Simultaneous saccharification and fermentation of cellulose rich solids from first stage hydrolysis produced 57.2 g/l of ethanol. These results showed that two-stage enzymatic hydrolysis of low-temperature aqueous ammonia pretreated biomass facilitated higher yields and efficiency of production of ethanol and xylitol.

Keywords: Aqueous ammonia soaking; Sugarcane bagasse; Cellulosic ethanol; Xylitol; Two-stage hydrolysis; Two-stage aeration; High solids hydrolysis; Candida tropicalis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302287
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:392-403

DOI: 10.1016/j.renene.2020.02.042

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:392-403