Unveiling one-pot scalable fabrication of reusable carboxylated heterogeneous carbon-based catalysts from eucalyptus plant with the assistance of dry ice for selective hydrolysis of eucalyptus biomass
Hassan Idris Abdu,
Kamel Eid,
Aboubakr M. Abdullah,
Zhengang Han,
Mohammed Hassan Ibrahim,
Duoliang Shan,
Jing Chen,
Ahmed A. Elzatahry and
Xiaoquan Lu
Renewable Energy, 2020, vol. 153, issue C, 998-1004
Abstract:
Biomass is the most abundant source for organic carbon-based substances on the earth; however, its utilization as sources for heterogeneous catalysts for biorefineries is rarely reported. Herein, a simple approach was developed for tailoring one-pot fabrication of carboxylate heterogeneous catalysts from woody biomass eucalyptus denoted as (ECS) via the ball-milling in the presence of dry ice as an oxidant followed by protonation. The ECS catalyst was obtained in a high yield of (100%) without any waste, organic solvents, and multistep reactions. The resultant ECS is composed of an aromatic skeleton enriched with a carboxylic group (COOH) of (2.4 mmol g−1) as well as some aliphatic moieties (CH0.44O0.42). The COOH content in the ECS was a function of the ball-milling time. The newly designed ECS catalyst allowed the successful hydrolysis of eucalyptus biomass to xylose (95.1%) and glucose (81%) at 180 °C within only 17 min in the presence of 120 ppm of HCl. Intriguingly, the obtained solid residuals of both catalysts and unhydrolyzed eucalyptus could be milled again to form a fresh ECS catalyst. The presented approach opens new avenues for the fabrication of scalable heterogeneous-carbon catalysts for biorefineries applications.
Keywords: Eucalyptus; Heterogeneous carbon-based catalysts; Hydrolysis of biomass; Ball-milling; Dry ice (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120302202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:153:y:2020:i:c:p:998-1004
DOI: 10.1016/j.renene.2020.02.034
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().