A multicriteria approach to choose the best renewable refrigeration system for food preservation
Sergio Rech,
Elisa Finco and
Andrea Lazzaretto
Renewable Energy, 2020, vol. 154, issue C, 368-384
Abstract:
Food spoilage represents an urgent issue in tropical developing countries because of the lack of correctly refrigerated post-harvest storage, transportation and distribution facilities. This paper searches for the best choice of configuration and design parameters of food refrigeration systems integrated with renewable conversion units in tropical areas using a multicriteria approach (energetic, exergetic and economic). Fourty-four technically feasible integrated configurations are identified for three preservation temperatures of the food (8, 2 and −20 °C). Each configuration is simulated from the energetic, exergetic and economic point of view during one year of operation using detailed design and off-design models. A thermal storage or the connection with the electric grid is considered in the integrated configurations fuelled by solar energy to guarantee a continuous operation. Results show that the PV-powered flash-intercooled compression system is the most efficient integrated configuration for each food storage temperature (annual average COP in the range 2.3–5.7) but it represents the most economically viable option only for the highest food preservation temperature. At lower temperatures, the single-effect absorption cycle coupled with a bagasse-fired boiler shows lower costs because of the very low price of bagasse in tropical countries. On the other hand, all options including the half-effect absorption cycle result to be the less promising in terms of both COP and costs.
Keywords: Food preservation; Compression and absorption refrigeration systems; Refrigeration systems configurations; Design optimization; Renewable energy sources (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:368-384
DOI: 10.1016/j.renene.2020.02.115
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().