EconPapers    
Economics at your fingertips  
 

Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates

Kai Feng, Qiao Wang, Huan Li, Yangyang Zhang, Zhou Deng, Jianguo Liu and Xinrui Du

Renewable Energy, 2020, vol. 154, issue C, 385-393

Abstract: In two-phase anaerobic digestion (TPAD) of food waste, alkaline addition is commonly used to alter fermentation types aiming to improve the subsequent methanogenesis. However, alkaline usage could also cause the accumulation of salt and inhibit methanogens. To discover the opposite effect, a series of continuous TPAD experiments with automatic pH control were conducted at different organic load rates (OLRs). The results indicated that pH regulation was not always effective for TPAD. At the OLR of 1.9 g/(L·d), mixed acid fermentation at pH 6.0 and lactic acid fermentation at pH 4.5 were achieved with the average NaOH dose of 1.69 and 2.45 g/(L·d), respectively, and the subsequent methane production increased to 460 and 482 ml/g in comparison to 380 ml/g in single-phase anaerobic digestion (SPAD). At the OLR of 2.4 g/(L·d), the Na+ concentration in methanogenic phase increased more than 3.5 g/L, resulting in the deterioration of methane production. At the OLRs higher than 3.2 g/(L·d), pH control cannot be applied to TPAD, and SPAD suffered from excessive acidification. Thus, TPAD without pH control became the only choice, but its methane yield was only 397 ml/g, implying new methods should be considered to improve TPAD.

Keywords: Anaerobic digestion; Fermentation; Food waste; Methane; Sodium hydroxyl (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303761
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:385-393

DOI: 10.1016/j.renene.2020.03.051

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:385-393