NiCo–N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell
Saadia Hanif,
Naseem Iqbal,
Xuan Shi,
Tayyaba Noor,
Ghulam Ali and
A.M. Kannan
Renewable Energy, 2020, vol. 154, issue C, 508-516
Abstract:
For alkaline fuel cell, development of highly efficient catalysts based on non-noble metal for oxygen reduction reaction is of high significance. In this work, synthesis of nitrogen doped carbon nanotubes (NCNTs) derived from Zeolitic Imidazolate Frameworks (ZIFs) and their performance for oxygen reduction reaction (ORR) in alkaline medium are studied. The NiCo/NCNTs (nitrogen doped carbon nanotubes) showing excellent ORR performance in KOH with current density of −5.6 mA cm−2 and onset potential of 0.98 V vs RHE. The improved electrochemical performance and stability is credited to the synergetic effect of the nitrogen doped carbon nanotubes (NCNTs) and the Ni/Co active sites. The alkaline fuel cell performance of NiCo/NCNTs as cathode catalyst was 65 mW cm−2, which is slightly higher than the commercial Pt/C as cathode (60 mW cm−2). These results indicate that NiCo/NCNTs are promising electrocatalysts for ORR in alkaline fuel cell.
Keywords: ORR Electrocatalyst; Nitrogen doped carbon nanotubes (NCNTs); Membrane-electrodes assembly; Alkaline fuel cell (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303852
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:508-516
DOI: 10.1016/j.renene.2020.03.060
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().