EconPapers    
Economics at your fingertips  
 

Comparing various solar irradiance categorization methods – A critique on robustness

Bálint Hartmann

Renewable Energy, 2020, vol. 154, issue C, 661-671

Abstract: Traditional ways of planning and operation of electricity networks have been challenged lately by the spread of variable renewable energy sources, especially solar photovoltaics, and the need for better forecasting has increased interest in various solutions. Categorization of solar irradiance data, as one of the earliest applied techniques, is a frequently discussed topic in the literature, but the efficiency of different methods may be significantly variable. The aim of this paper is to compare various categorization methods using a one-year-long solar irradiance dataset and reflect on their inefficiencies and the need for more timely solutions.

Keywords: Solar irradiance; Classification; Clustering; Clearness; Variability; Solar photovoltaics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303803
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:661-671

DOI: 10.1016/j.renene.2020.03.055

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:661-671