Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework
Xunpeng Shi,
Xun Liao and
Yanfei Li
Renewable Energy, 2020, vol. 154, issue C, 786-796
Abstract:
Towards decarbonizing the global economy, hydrogen produced through water electrolysis is expected to be one of the key solutions for variable renewable energy storage and sector coupling, in particular, via the transport sector in the next few decades. Even though water is an important aspect of the environmental impact, the impact assessment of hydrogen production on water is lacking. This paper proposes a comprehensive methodology for assessing the water footprints of hydrogen production from electrolysis. A major innovative aspect is to demonstrate the geographical distribution of the footprints along the supply chain. The water footprints for hydrogen produced from grid electricity, wind and solar power in Australia was analysed as a case study. Sensitivity analysis was used to evaluate the influence of key parameters including Solar Radiation Level, Silicon Efficiency, and Lifetime of PV Modules. The study finds that the water consumption footprint is much less than that reported in the literature and large part of the water could be consumed indirectly outside of hydrogen producing countries. The quantity of water footprint varies significantly among different assumptions. The findings provide insights into both domestic and cross-boundary water impacts of hydrogen electrolysis and can thus inform policy debates in each nation and beyond.
Keywords: Power to hydrogen; Water electrolysis; Water footprint; Life cycle assessment; Australia (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120303487
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:786-796
DOI: 10.1016/j.renene.2020.03.026
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().