A novel stationary concentrator to enhance solar intensity with absorber-only single axis tracking
Manoj Kumar Sharma and
Jishnu Bhattacharya
Renewable Energy, 2020, vol. 154, issue C, 976-985
Abstract:
Enhancement of solar intensity is achieved through concentrator which focuses direct normal irradiance to a smaller area. Such redirection necessitates aligned movement of the whole assembly along the apparent motion of the sun. The motion of a bulky system consumes significant power during the operation, thereby reducing the effective energy collection efficiency. Therefore, a static geometry which does not require tracking the sun is desirable as concentrating optics. Here, we propose such a novel static concentrator based on cylindrical Fresnel lens. Only the absorber is given a single axis tracking motion. A systematic optimization is performed to select the geometrical parameters which maximize the solar intensity and minimize the intensity-non-uniformity. For a Silicone glass cylinder of 20 cm diameter, we find an absorber of width 5 cm, placed at a distance of 11 cm from the axis of the concentrator provides the maximum intensity and the minimum intensity-non-uniformity when the vertex angle of the Frensel lens is 37°. The study demonstrates that the procedure to perform such geometry optimization is straightforwardly extendable. We demonstrate that the annual average intensity on the absorber can be enhanced by over ∼50% with lower operational cost and a meagre increase in the initial cost.
Keywords: Cylindrical concentrator; Fresnel lens; Solar concentrator; No tracking; Photovoltaic; Static concentrator (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812030389X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:154:y:2020:i:c:p:976-985
DOI: 10.1016/j.renene.2020.03.064
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().