EconPapers    
Economics at your fingertips  
 

Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application

Nicholas M. Musyoka, Magdalena Wdowin, Khavharendwe M. Rambau, Wojciech Franus, Rafał Panek, Jarosław Madej and Dorota Czarna-Juszkiewicz

Renewable Energy, 2020, vol. 155, issue C, 1264-1271

Abstract: Activated carbons (ACs) have desirable characteristics that make them attractive for many industrial applications. In order to reduce their production cost, there is always a need to find alternative low-cost feedstock precursors. Nowadays zero-waste technologies play an important role in sustainable development, therefore using of coal by-product as source of AC is strongly recommended. In this study, coal fly ash (CFA) sample with a high unburned carbon content was used to synthesize ACs. The effect of acid pre-treatment of the CFA sample using HF and HCl prior to thermochemical activation using KOH was also investigated. The acid washing was found to be effective since it removed most of the inorganic components found in the CFA, as was confirmed by EDS and XRF. The resulting carbon-rich feedstock had relatively high content of meso-/macropores as well as with relative increase in specific surface area (46.19 m2/g - 81.20 m2/g). The obtained AC sample was found to exhibit high specific surface (946.77 m2/g) that was dominated by high microporosity and was tested for hydrogen storage. The H2 uptake (1 bar, 77 K) was found to be 1.35 wt% and with a predictable potential for even higher capacity when measurements are conducted at high pressures.

Keywords: Activated carbon; Rich-coal fly ash; Unburned carbon; Hydrogen storage (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120305310
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:155:y:2020:i:c:p:1264-1271

DOI: 10.1016/j.renene.2020.04.003

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:1264-1271