Catalytic conversion of spent frying oil into biodiesel over raw and 12-tungsto-phosphoric acid modified clay
Ihtisham Wali Khan,
Abdul Naeem,
Muhammad Farooq,
Tahira Mahmood,
Bashir Ahmad,
Muhammad Hamayun,
Zahoor Ahmad and
Tooba Saeed
Renewable Energy, 2020, vol. 155, issue C, 181-188
Abstract:
In the present work, locally available clay has been utilized to develop cost effective catalyst for biodiesel production from low cost feedstock. The selected clay was modified with different concentrations (5 wt%, 10 wt%, 20 wt%, 30 wt% and 40 wt %) of 12-tungstophosphoric acid (TPA) to enhance the capability of the selected clay in biodiesel production from spent frying oil. The synthesized catalyst was characterized with different analytical techniques to evaluate its physiochemical properties. The result suggested that the catalyst containing 10 wt% 12-tungstophosphoric acid (TPA) loading exhibited good trans-esterification activity to produce maximum biodiesel yield of 96% under the best reaction conditions: oil/methanol molar ratio, 1:10; catalyst amount, 0.7 g; reaction time, 4.5 h and reaction temperature, 85 °C.
Keywords: Biodiesel; TPA/Bentonite; Heterogeneous catalysis; Spent frying oil (SFO); Optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120304559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:155:y:2020:i:c:p:181-188
DOI: 10.1016/j.renene.2020.03.123
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().