EconPapers    
Economics at your fingertips  
 

Emission characteristics of particulate matters from a 30 MW biomass-fired power plant in China

Zhongfa Hu, Xuebin Wang, Lan Zhang, Shunzhi Yang, Renhui Ruan, Shengjie Bai, Yiming Zhu, Liang Wang, Hrvoje Mikulčić and Houzhang Tan

Renewable Energy, 2020, vol. 155, issue C, 225-236

Abstract: The emission characteristics of particulate matters from a full-scale biomass-fired power plant equipped with bag filters were investigated. Results show that particle size distribution at the inlet of bag filter from the combustion of blended feedstocks is bimodal, while that of dry bark feedstocks is essentially unimodal with negligible emission of coarse particles with diameter in the range of 1.0–10 μm. The combustion of blended fuels generates higher yields of submicro particles than that of dry bark feedstocks. Elemental analysis shows that submicro particles in all cases mainly consist of potassium, chlorine, and sulfur. Higher chlorine but lower sulfur contents are observed in submicro particles from blended fuels compared with that from dry bark feedstocks. The vibrating operation of grate furnace reduces submicro particles emission as well as the sulfur content in all particles. Ion chromatography results show that sulfate ion and chloridion are the two most abundant water-soluble anions in particulate matters, while water-soluble cations are richest in potassium with considerable content of calcium, magnesium, sodium and ammonia. The contribution of organic and element carbon in particulate matters is in the range of 1–3%, indicating high combustion efficiencies and low organic and element carbon emissions of biomass-fired grate furnaces.

Keywords: Biomass combustion; Fine particle; Sulfur; Grate vibration; Potassium (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120304195
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:155:y:2020:i:c:p:225-236

DOI: 10.1016/j.renene.2020.03.094

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:225-236