Hourly operational assessment of HVAC systems in Mediterranean Nearly Zero-Energy Buildings: Experimental evaluation of the potential of ground cooling of ventilation air
Fabrizio Ascione,
Martina Borrelli,
Rosa Francesca De Masi and
Giuseppe Peter Vanoli
Renewable Energy, 2020, vol. 155, issue C, 950-968
Abstract:
The main purpose of this study is to evaluate, based on experimental data, the potential of pre-cooling the ventilation air based on ground-to-water heat exchanger, coupled with an intermediate water-to-air exchanger, during the summer period. The case study for this investigation is an existing nearly zero energy building located in Benevento, a middle-size city of South Italy with typical Mediterranean climate. Measurements of several performance parameters with four different HVAC possible configurations are shown as well as monitoring of energy uses and indoor microclimatic conditions in order to verify if comfort conditions inside the building are guaranteed together with the achievement of ‘nearly zero energy target’.
Keywords: Nearly Zero-Energy Building; Ground-water heat exchanger; Pre-treatment of ventilation air; Monitoring campaign; Experimental data; Mediterranean climate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120305139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:155:y:2020:i:c:p:950-968
DOI: 10.1016/j.renene.2020.03.180
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().