Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER)
Lubna Yaqoob,
Tayyaba Noor,
Naseem Iqbal,
Habib Nasir,
Manzar Sohail,
Neelam Zaman and
Muhammad Usman
Renewable Energy, 2020, vol. 156, issue C, 1040-1054
Abstract:
In this work, electrocatalytic studies of highly active and non-precious metal based Cobalt benzene tricarboxlic acid (Co BTC) metal organic framework (MOF) and its reduced graphene oxide (rGO) composites for oxygen evolution reaction (OER) were performed in an alkaline media by employing cyclic voltammetry. Cobalt based MOF and their rGO composites were solvothermally synthesized. Prepared samples were further characterized for structural and morphological analysis through X-rays diffraction (XRD), scanning electron microscopy (SEM), Fourier transform Infrared (FTIR) spectroscopy and Energy dispersive spectroscopy (EDX) techniques. During CV studies the main emphasis was to observe the effect of rGO concentration on electrochemical response of synthesized materials for OER. Co BTC-5 wt % rGO (Cobalt benzene tricarboxlic acid-reduced graphene oxide) composite with current density of 10 mA/cm2 at over potential 0.29 V vs. RHE proved to be a potential candidate due to its high activity and stability for OER.
Keywords: Co-BTC; Metal organic framework; Reduced graphene oxide; Oxygen evolution reaction; Electrocatalysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306698
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:1040-1054
DOI: 10.1016/j.renene.2020.04.131
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().