Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate
Srijita Nundy and
Aritra Ghosh
Renewable Energy, 2020, vol. 156, issue C, 1361-1372
Abstract:
In this work, thermal and visual comfort of low heat loss switchable suspended particle device-vacuum (SPD-vacuum) glazing was investigated for less energy-hungry adaptive building’s glazing or façade integration at temperate climate. This SPD-vacuum glazing had 38% visible transmittance in the presence of 110 V applied an alternating voltage and 2% visible transmittance in the absence of electrical power. Outdoor test cell characterisation was employed to measure the thermal and daylighting parameters of this glazing. Solar heat gain or solar factor was calculated using non calorimetric methods and varied between 0.38 (Switch OFF/opaque) to 0.51 (Switch ON/transparent). Test cell indoor and ambient parameters (incident solar radiation and ambient temperature) were engaged for thermal comfort analysis by using PMV and PPD methods. Visual comfort was analysed from glare potential, useful daylight index, and colour properties. The comfortable thermal environment was attainable using both states of this glazing for a clear sunny day. Acceptable daylight throughout the day was possible for a clear sunny day for opaque state; however clear state offered allowable/comfortable correlated colour temperature (CCT) of 5786.18 K and colour rendering index (CRI) of 94.83.
Keywords: SPD; Vacuum; Thermal comfort; Test cell; Temperature; Transmission; Glazing, Visual comfort, Daylight, Glare, PMV-PPD; Visual comfort; Daylight; Glare; PMV-PPD (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318749
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:1361-1372
DOI: 10.1016/j.renene.2019.12.004
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().