EconPapers    
Economics at your fingertips  
 

Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor

Chao Wang, Hanwei Wang, Baokang Dang, Zhe Wang, Xiaoping Shen, Caicai Li and Qingfeng Sun

Renewable Energy, 2020, vol. 156, issue C, 370-376

Abstract: Conversion of Biomass into porous carbon with high yield is a huge challenge due to the consumption of plentiful carbon during pore-forming. Here, we employ the biomass materials as the activation agent to circumvent the excessive etching effect of the conventional chemical reagent. Both green activation agent and raw material are converted into porous carbon, which results in ultrahigh yield (even more than 100%). Furthermore, the biomass activation agent with abundant metal elements not only contributes to pore-forming but also achieves heteroatom doping. The obtained N-doped hierarchical porous carbon presented good capacitive capability (150.1 F g−1 at 0.2 A g−1) and high rate performance (∼61% of capacitance retention from 0.2 to 50 A g−1). The green activation process achieves both the increase of yield and excellent capacitive properties for the first time. The green strategy proposed in this work for producing porous carbon with high yield provides a new consideration on comprehensive utilization of biomass resources.

Keywords: Biomass waste; Pore-forming; Hierarchical porous carbon; High yield; Supercapacitor (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306248
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:370-376

DOI: 10.1016/j.renene.2020.04.092

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:370-376