Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse
Joan Muñoz-Liesa,
Mohammad Royapoor,
Elisa López-Capel,
Eva Cuerva,
Martí Rufí-Salís,
Santiago Gassó-Domingo and
Alejandro Josa
Renewable Energy, 2020, vol. 156, issue C, 696-709
Abstract:
A major concern for sustainable development is urban systems energy consumption. A possible way to gain additional whole system energy efficiencies is to integrate rooftop greenhouses (iRTG) on unoccupied roofs. This work presents actual environmental data (2015–2018) and calibrated energy modelling results to analyze the energy symbiosis between an iRTG and the host building. Simulation results illustrate that annually 98 kWh/m2 of heating energy is passively recovered (84% during night time) from the building by the iRTG. Conversely the iRTG insulating capacity resulted in annual energy saving of 35 kWh/m2 for the host building (equal to 4% of the building’s annual energy needs). When combined an overall 128 kWh/m2 of net energy savings and 45.6 kg CO2 eq/m2 of savings are realised via iRTG. On average, iRTG daytime temperatures can be 5.1 °C warmer (summer) and −4.3 °C cooler (winter) than the building. This presents major potentials for recovery and exchange of heating and cooling energy flows through integrating heating and ventilation air conditioning systems of the building and iRTG. Hence, iRTGs can provide a source of renewable energy as well as a sink for building exhaust air to improve energy efficiencies of urban built environment and urban agriculture.
Keywords: Energy modelling; Energy efficiency; Industrial ecology; Industrial symbiosis; Building integrated agriculture; Urban agriculture (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306303
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:696-709
DOI: 10.1016/j.renene.2020.04.098
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().