EconPapers    
Economics at your fingertips  
 

Infinite photovoltaic solar arrays: Considering flux of momentum and heat transfer

Andrew Glick, Naseem Ali, Juliaan Bossuyt, Gerald Recktenwald, Marc Calaf and Raúl Bayoán Cal

Renewable Energy, 2020, vol. 156, issue C, 791-803

Abstract: Large scale solar farms supply an increasing amount of the worlds electricity supply. However, high operation temperatures can strongly reduce efficiency and panel lifetime, negatively affecting the levelized cost of energy. In this work, the convective heat transfer coefficient for a utility-scale solar farm is studied with combined thermal and particle-image-velocimetry measurements in a scaled wind tunnel experiment. The measurements confirm the applicability of the scaled experimental setup to study large solar arrays. Further, the velocity measurements indicate the complex flow structure within the solar array, governed by wakes directed upwards due to the orientation of the solar panels.

Keywords: Solar photovoltaic; Array cooling; PIV; Turbulence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120305164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:791-803

DOI: 10.1016/j.renene.2020.03.183

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:791-803