Solar photocatalytic glycerol reforming for hydrogen production over Ternary Cu/THS/graphene photocatalyst: Effect of Cu and graphene loading
Tumelo W.P. Seadira,
Cornelius M. Masuku and
Michael S. Scurrell
Renewable Energy, 2020, vol. 156, issue C, 84-97
Abstract:
Ternary Cu/TiO2/rGO photocatalysts with varying Cu and graphene loadings were prepared by a solvothermal method. Pure anatase TiO2 hollow spheres (THS) were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via a hydrothermal method; Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, deposition and well dispersion of Cu–TiO 2 hollow spheres composites onto graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV–vis DRS, and Photoluminescence (PL). The activity of the prepared catalyst was tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under natural solar light irradiation. The excellent photocatalytic activity of the ternary Cu/THS/graphene catalyst is attributed to the graphene sheets, which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pair separation.
Keywords: Glycerol photo-reforming; Photocatalytic water splitting; Hydrogen evolution; Titania hollow spheres; Graphene sheets facilitated catalysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120305486
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:156:y:2020:i:c:p:84-97
DOI: 10.1016/j.renene.2020.04.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().