EconPapers    
Economics at your fingertips  
 

Plasma-enabled liquefaction of lignocellulosic biomass: Balancing feedstock content for maximum energy yield

Danhua Mei, Shiyun Liu, Sen Wang, Renwu Zhou, Rusen Zhou, Zhi Fang, Xianhui Zhang, Patrick J. Cullen and Ostrikov, Kostya (Ken)

Renewable Energy, 2020, vol. 157, issue C, 1061-1071

Abstract: Plasma-enabled liquefaction (PEL) is an emerging technology to transform renewable biomass into value-added fuels and chemicals through the plasma-induced highly-reactive chemical reactions. However, biomass dramatically ranges in the feedstock content in terms of hemicelluloses, cellulose, lignin, and ash, strongly affecting the liquefaction performance. Here, we performed the liquefaction of three typical lignocellulosic materials (sawdust, corncob and rice straw) with different feedstock contents in a PEL system. The influence of the catalyst content and the reaction time on the degradation of each biomass was investigated to understand the effect of the feedstock content on liquefaction yield. The results confirmed that the chemical contents of the lignocellulosic biomass especially the amount of lignin and ash significantly affected the liquefaction yield, the quality of liquid products and the distributions of the chemicals obtained. Compared with the PEL performance of corncob and rice straw, the higher energy yield (liquid fuels) was achieved in the PEL of sawdust, owing to higher content of lignin and less ash inside. Moreover, possible reaction pathways of lignocellulose biomass liquefaction were deduced based on the chemical analysis. Overall, this work demonstrated that the proposed PEL strategy could be a promising approach for rapid biomass conversion with high energy efficiencies.

Keywords: Non-thermal plasma; Fast liquefaction; Lignocellulosic biomass; Liquefaction yield; Energy yield (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307679
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:1061-1071

DOI: 10.1016/j.renene.2020.05.069

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1061-1071