EconPapers    
Economics at your fingertips  
 

Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application

Kuo-Tsang Huang

Renewable Energy, 2020, vol. 157, issue C, 1102-1115

Abstract: As cooling and heating energy consumptions of buildings are closely related to outdoor climate variations, the reliability of building energy simulation results is significantly influenced by the accuracy of weather data being used. We intend to construct a new typical meteorological year (TMY) for Taipei. As no beam or diffuse solar irradiance data have been recorded at local weather stations, a preliminary study on the influences of currently available hourly solar diffuse fraction models (DFMs) to the building cooling loads was performed. A 2.30%–5.18% range of annual cooling load variation was observed, which drove a need for searching suitable DFMs. To this end, the observed diffuse irradiance data of an in-situ experiment was compared to the DFM modeled values to identify the suitable DFM. It was found that Kuo’s model, which has its coefficient been adapted to the local weather and further uses solar altitude, the daily clearness index as predicting variables, performed best and was used herein. The representativeness against the long-term climate of the three antiquated TMYs and the new one was discussed with a simulation-based comparison from 12 existing buildings. The reliability and accuracy of the new TMY in representing the local climate conditions are much improved.

Keywords: Hourly weather year time series; Solar decomposition model; Diffuse irradiance; Building energy simulation; Weather year comparison; TMY (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:1102-1115

DOI: 10.1016/j.renene.2020.05.094

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:1102-1115