Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum
Minhaj Uddin Monir,
Azrina Abd Aziz,
Fatema Khatun and
Abu Yousuf
Renewable Energy, 2020, vol. 157, issue C, 1116-1123
Abstract:
Biomass-generated syngas conversion through fermentation is a promising technique for bioethanol production due to increasing demand for clean and sustainable energy. However, lignocellulosic biomass is difficult to degrade wholly, and traditional pretreatment process has several drawbacks. The present study emphasizes on bioethanol production from lignocellulosic biomass-based syngas including the main composition of N2 (45.58%), CO (22.92%), CO2 (7.9%), H2 (13.05%), and CH4 (1.13%). Field emission electronic microscopic analysis was used to characterize freshly cultured Clostridium butyricum for syngas fermentation and experiment was run in a bioreactor (TFB). The obtained yield of bioethanol was analyzed by nuclear magnetic resonance and gas chromatography-mass spectrometry analyses. For this syngas fermentation, treated syngas was preferred, as most of the Clostridium butyricum grown on best fermentation conditions. The results show that except 0.03% of CO2, other gases were dissolved entirely. It is also found that extracted bioethanol was identified by corresponding NMR (1H) spectra of methyle group (CH3-), methylene group (–CH2–) and hydroxyl group (OH). The yield of bioethanol was 29.94 mmol from 1 L of syngas. Hence, this biomass-generated syngas is the appropriate renewable energy source for the meetup of future energy needs.
Keywords: Bioethanol; Clostridium butyricum; Syngas; Syngas fermentation; TFB (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307977
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:1116-1123
DOI: 10.1016/j.renene.2020.05.099
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().