EconPapers    
Economics at your fingertips  
 

Investigation on catalytic hydrodeoxygenation of eugenol blend with light fraction in bio-oil over Ni-based catalysts

Guanyi Chen, Juping Liu, Xiangping Li, Jianguang Zhang, Han Yin and Zhenping Su

Renewable Energy, 2020, vol. 157, issue C, 456-465

Abstract: In this work, HZSM-5, Al-SBA-15 and Al-SBA-15/HZSM-5 were adopted as supporting materials for the nickel-based catalysts used in hydrodeoxygenation process. Incipient wetness impregnation method was employed to load nickel species onto these materials. The physicochemical characterization was carried out using advanced instruments. The effect of composition of nickel-based catalysts on hydrodeoxygenation (HDO) reaction was studied. Support materials of nickel-based catalyst have a significantly impact on HDO activity. The highest selectivity (67.9%) of propyl-cyclohexane was obtained over nickel based Al-SBA-15/HZSM-5 catalyst, and nearly all the eugenol was completely hydrodeoxygenated after reaction. The impact of light fractions existed in bio-oil on phenols upgrading process was investigated. The conversion of eugenol mixed with light fractions reached nearly 100% for all the reactions. Eugenol mixed with light fractions as reactant could reduce ring break reaction during hydrodeoxygenation process. The selectivity of alkanes remained nearly unchanged after adding ethylene glycol into the reactant. However, the selectivity of propyl-cyclohexane was significantly decreased by mixing furfural or acetic acid with eugenol as reactant.

Keywords: Ni/HZSM-5/Al-SBA-15; Hydrodeoxygenation; Liquid phase; Eugenol; Light fraction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307382
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:456-465

DOI: 10.1016/j.renene.2020.05.040

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:456-465