Polybenzimidazole-crosslinked-poly(vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers
R.E. Coppola,
D. Herranz,
R. Escudero-Cid,
N. Ming,
D’Accorso, N.B.,
P. Ocón and
G.C. Abuin
Renewable Energy, 2020, vol. 157, issue C, 71-82
Abstract:
Zero-gap liquid alkaline water electrolyzers have great potential for hydrogen production. In order to enhance their actual performance, one of the key components to investigate is the anionic exchange membrane that allows the conduction of anions between the electrodes. This paper reports the preparation and characterization of membranes composed of a polybenzimidazole, either poly(2,5-benzimidazole) (ABPBI) or poly[2-2′-(m-phenylene)-5-5′-bibenzimidazole] (PBI), crosslinked with different ratios of poly(vinylbenzyl chloride) (PVBC), forming thermally stable and homogeneous films. Quaternization of these films with 1,4-diazabicyclo (2.2.2) octane (DABCO) followed by immersion in an alkaline solution lead to the introduction of quaternary ammonium groups and hydroxide anions respectively. Adequate thermal stability is observed in the temperature range of application (below 100 °C). Measurements of KOH and water and related swelling reflect the higher absorption capacity of ABPBI based membranes relative to PBI based ones. ABPBI-c-PVBC/OH 1:2 membranes at 50 °C are characterized by high ionic conductivity values (48 mS cm−1), reaching 380 mA cm−2 at cell voltage 1.98 V. In conclusion, we consider that these membranes are competitive candidates as anion exchange membranes for zero-gap alkaline water electrolyzers, and can be further enhanced to reach the performance of state of the art AEM’s.
Keywords: Anion exchange membrane; Polybenzimidazole; Crosslinked; Quaternized; Electrolyzer (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120306789
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:71-82
DOI: 10.1016/j.renene.2020.04.140
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().