Improving response of wind turbines by pitch angle controller based on gain-scheduled recurrent ANFIS type 2 with passive reinforcement learning
Ehsan Hosseini,
Ehsan Aghadavoodi and
Luis M. Fernández Ramírez
Renewable Energy, 2020, vol. 157, issue C, 897-910
Abstract:
In this paper, passive reinforcement learning (RL) solved by particle swarm optimization policy (PSO–P) is used to handle an adaptive neuro-fuzzy inference system (ANFIS) type-2 structure with unsupervised clustering for controlling the pitch angle of a real wind turbine (WT). The proposed control scheme is based on gain-scheduled reinforcement learning recurrent ANFIS type 2 (GS-RL-RANFIST2) pitch angle controller to maintain the rotor speed at its rated value while smoothing the output power and the performance of the pitch angle system. The practical application of the proposed controller is evaluated by using FAST tool for a real 600 kW WT equipped with a synchronous generator with a full-size power converter (CART3, located at the National Renewable Energy Laboratory, NREL), whose results are compared with those obtained by a gain corrected proportional integral (GC-PI) controller. The results demonstrate that the GS-RL-RANFIST2, which sets the nonlinear characteristics of the system automatically and waves more uncertainties in the windy conditions, allows to increase the energy capture and smooth the output power fluctuation, and therefore, to improve the control and response of the WT.
Keywords: Pith angle controller; Wind turbine; Gain-scheduled; ANFIS type-2 controller; Reinforcement learning (RL); Unsupervised clustering (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307588
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:897-910
DOI: 10.1016/j.renene.2020.05.060
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().