EconPapers    
Economics at your fingertips  
 

A discrete element model simulation of structure and bonding at interfaces between cathode and cathode contact paste in solid oxide fuel cells

Chao Wang, Zhijie Xu and Brian Koeppel

Renewable Energy, 2020, vol. 157, issue C, 998-1007

Abstract: For the first time, the impacts of solid oxide fuel cell (SOFC) cathode/contact paste interface roughness on mechanical strength are quantified using a particle based numerical technique in micro-scale. This work identifies a potential new direction to develop high strength SOFC stack structures to enhance SOFC long-term durability with most commonly used material. To model the effect of different interface roughness values on the integrity of the dissimilar material joint as well as the fracture behavior of the bonded interface, a discrete element model (DEM) method is adapted due to many unique advantages. The model demonstrates that interfacial toughness increases with interfacial roughness and sintering temperatures. In particular, the roughened interface can increase ultimate mechanical strength to a factor of 2–3 compared with the smooth interface. Moreover, contact paste with higher stiffness properties can be beneficial in terms of delaying the onset of the initial interfacial damage at rough interfaces. The results also show that toughness decreases with increasing strength ratio between the interface and contact paste. It is expected that this study can provide guidance to improve SOFC cathode design with better mechanical strengths, which would benefit the mechanical integrity of the SOFC stack.

Keywords: Interface bond; Cathode contact; DEM; SOFC (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120308090
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:157:y:2020:i:c:p:998-1007

DOI: 10.1016/j.renene.2020.05.111

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:998-1007