EconPapers    
Economics at your fingertips  
 

Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance

Devesh Vishal, Shivesh Dubey, Rahul Goyal, Gaurav Dwivedi, Prashant Baredar and Mayank Chhabra

Renewable Energy, 2020, vol. 158, issue C, 167-180

Abstract: Rubber (Hevea brasilienis) is a plantation crop grown in various regions of India. It is a non-edible oil source and has excellent potential for being a biodiesel feedstock. The major problem with crude rubber seed oil is its high free fatty acid (FFA) content (37.46%). The present study has used the Box-Behnken response surface method to minimize the FFA content of the oil. FFA content of 1.31% was obtained with alcohol to oil molar ratio of 6.652:1 and 0.5 wt% of H2SO4 catalyst at a reaction temperature of 63.75 °C in 50 min. The results of engine testing indicated a decrease in fuel consumption by 50.23% for RB10 and 47.74% for RB20 when compared with neat diesel. The thermal efficiency was reduced by 12.16% for RB10 and 14.74% for RB20. The emission analysis revealed that HC emissions were increased by 22.3% for RB10 and by 41.72% for RB20. There was a decrease in NOx emissions by 21.5% for RB10 and by 21.7% for RB20 while the CO2 emissions were reduced by 46.3% for RB10 and 49.54% for RB20 at full loading. The CO emissions were increased by 25% and 37.5% for RB10 and, respectively, when compared with diesel.

Keywords: Rubber seed oil; Box-Behnken design; Response surface methodology; Free fatty acid; Engine; Emission (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120308405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:158:y:2020:i:c:p:167-180

DOI: 10.1016/j.renene.2020.05.136

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:167-180