Intra-day solar probabilistic forecasts including local short-term variability and satellite information
R. Alonso-Suárez,
M. David,
V. Branco and
P. Lauret
Renewable Energy, 2020, vol. 158, issue C, 554-573
Abstract:
In this work, three models are built to produce intra-day probabilistic solar forecasts with lead times ranging from 10 min to 3 h with a granularity of 10 min. The first model makes only use of past ground measurements. The second model upgrades the first one by adding a variability metric obtained also from the past ground measurements. The third model takes as additional input the satellite albedo. A non parametric approach based on the linear quantile regression technique is used to generate the set of quantiles that summarize the predictive distributions of the global solar irradiance at a horizontal plane (GHI). The probabilistic models are evaluated on several sites that experience very different climatic conditions. It is shown that incorporating variability significantly reduces the width of interval predictions. The addition of satellite information further improves the quality of the probabilistic forecasts.
Keywords: GHI; Probabilistic forecast; Ground measurement; Solar variability; Satellite images (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307448
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:158:y:2020:i:c:p:554-573
DOI: 10.1016/j.renene.2020.05.046
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().