Analytical study of transient counter-flow non-premixed combustion of biomass in presence of thermal radiation
Moein Farmahini Farahani,
Shahin Akbari,
Sadegh Sadeghi,
Mehdi Bidabadi,
Mohammadamir Ghasemian Moghadam and
Fei Xu
Renewable Energy, 2020, vol. 159, issue C, 312-325
Abstract:
In this study, the transient behavior of a counter-flow non-premixed combustion of dry biomass particles under thermal radiation was modeled analytically. Unsteady conservation equations for mass and energy transports are mathematically formulated in dimensional and dimensionless forms. Preheating, vaporization and reaction processes were considered as the main processes for combustion of the biomass particles. The derived analytical model was solved using an asymptotic technique. After validating our derived analytical model with experimental data, the counter-flow non-premixed combustion of dry lycopodium particles with air was investigated. First, the temporal evolutions of distributions of temperature and species mass fractions were presented and discussed. Also, the temporal changes of flame temperature and position were discussed. The influence of thermal radiation was found to be quantitatively other than qualitatively. Finally, the effects of key operating parameters, such as biomass particle diameter, and Lewis numbers of biomass and oxidizer, were studied. When the combustion process reaches steady state, for unity Lewis number, maximum values of flame temperature with and without the radiative heat losses are equal to 1650 K and 1910 K at t=0.02s, respectively.
Keywords: Biomass combustion; Transient behavior; Non-premixed flame; Counter-flow configuration; Analytical model; Thermal radiation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120307539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:159:y:2020:i:c:p:312-325
DOI: 10.1016/j.renene.2020.05.056
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().